#P1820. 金明的预算方案

金明的预算方案

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 nn 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件附件
电脑打印机,扫描仪
书柜图书
书桌台灯,文具
工作椅
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 $0$ 个、 $1$ 个或 $2$ 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 $n$ 元。于是,他把每件物品规定了一个重要度,分为 $5$ 等:用整数 $1 \sim 5$ 表示,第 $5$ 等最重要。他还从因特网上查到了每件物品的价格(都是 $10$ 元的整数倍)。他希望在不超过 $n$ 元的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第 jj 件物品的价格为 vjv_j ,重要度为 wjw_j ,共选中了 kk 件物品,编号依次为 j1,j2,,jkj_1,j_2,\dots,j_k ,则所求的总和为:

vvj1j1×w \times wj1j1+v+vj2j2×w \times wj2j2 ++v+ \dots +vjkjk ×w \times wjkjk

请你帮助金明设计一个满足要求的购物单。

输入

第一行有两个整数,分别表示总钱数 nn 和希望购买的物品个数 mm

22 到第 (m+1)(m + 1) 行,每行三个整数,第 (i+1)(i + 1) 行的整数 viv_ipip_iqiq_i 分别表示第 ii 件物品的价格、重要度以及它对应的的主件。如果 qi=0q_i=0 ,表示该物品本身是主件。

输出

输出一行一个整数表示答案。

样例

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
2200

说明

数据规模与约定

对于全部的测试点,保证 1n3.2×1041 \leq n \leq 3.2 \times 10^41m601 \leq m \leq 600vi1040 \leq v_i \leq 10^41pi51 \leq p_i \leq 50qim0 \leq q_i \leq m ,答案不超过 2×1052 \times 10^5

来源:noip2006提高组第2题。

来源

noip2006提高组第2题